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Flow equation calculation of transient and steady-state currents in the Anderson impurity model
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Transient and steady-state currents through dc-biased quantum impurity models beyond the linear-response
regime are of considerable interest, both from an experimental and a theoretical point of view. Here we present
an analytical approach for the calculation of such currents based on the flow equation method (method of
infinitesimal unitary transformations). Specifically, we analyze the Anderson impurity model in its mixed
valence regime where the coupling to the leads is switched on suddenly at time t=0. We observe the real time
buildup of the current until it reaches its steady-state limit.
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I. INTRODUCTION

Transport properties of quantum devices beyond the
linear-response regime have generated a lot of interest in the
past decade. Experimentally, this is due to the recent ad-
vances in nanotechnology that permit to apply large electri-
cal fields in low-dimensional electronic structures. Theoreti-
cally, transport beyond the linear-response regime is
interesting since it explores genuine nonequilibrium quantum
many-body phenomena. A particularly well-studied case,
both experimentally and theoretically, is quantum dots in the
Coulomb blockade regime that display Kondo physics:'~
here the shot noise generated by the steady-state current
serves as a source of decoherence that suppresses the Kondo
quasiparticle resonance for sufficiently large voltage bias,*
thereby reducing the differential conductance.’

However, the interplay of correlation physics and non-
equilibrium is difficult to address theoretically, in spite of
considerable effort in recent years. New numerical methods
have been developed like the scattering state numerical
renormalization group,6 Monte Carlo methods,”” the time-
dependent density matrix renormalization group,'®!3 and
other real time methods.!*!> Analytical approaches are per-
turbative Keldysh calculations,'® extensions of the renormal-
ization group,'”? generalizations of noncrossing approxi-
mation to nonequilibrium,?*32 1/N expansions,*® Gutzwiller
methods,® and  various approaches building on
integrability.!!33-37 Since all of these methods have their re-
spective limited domain of applicability, there is still a need
for new theoretical methods.

In the past few years the flow equation method (method of
infinitesimal unitary transformations)®-3° was used for a
number of nonequilibrium quantum many-body problems
like interaction quenches***? and dc transport beyond the
linear-response regime.'”!843 In particular, for the Kondo
model numerous quantities like spin susceptibility, magneti-
zation, and T-matrix have been calculated for large voltage
bias in the steady state.'®* In addition, the flow equation
method is particularly suitable for calculating the real time
evolution of nonequilibrium problems.** Therefore it offers
the possibility to study the transient time-dependent buildup
of a quantity until it reaches its steady-state value, see, for
example, the calculation of the magnetization dynamics in
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the ferromagnetic Kondo model.*? This defines the question
investigated in this paper: using the flow equation method,
we calculate the time-dependent buildup of the electrical cur-
rent through an Anderson impurity model when the coupling
between the leads and the quantum dot is suddenly switched
on at time r=0. Thereby we develop an analytical method for
calculating transport properties of interacting quantum sys-
tems beyond the linear-response regime, both for transient
and steady-state behaviors.

The model of a single level quantum dot coupled to two
leads is described by the Anderson impurity Hamiltonian,

H=2, €ChpCrao+ €2 didy + > —E(c,'(wd(,+ H.c.)
N

koa o kao N
+Udld,d]d,, (1)

k denotes the wave vector, o=T1,| the electron spin, and «
=L, R the left and right leads. For time <0 both leads are in
equilibrium at different chemical potentials u; and wg. The
hybridization V between leads and the dot is then switched
on at time r=0 and we are interested in the current /() as a
function of time. For simplicity we restrict ourselves to sym-
metric coupling to the leads, although the calculation can be
generalized in a straightforward way.

An explicit expression for I(r) is achieved via the
forward-backward technique of the flow equation method:**
the current operator is expressed in the diagonal basis of
Hamiltonian (1), where its time evolution can be worked out
easily. Then the time-evolved operator is transformed back
into the original basis, where the initial condition of nonin-
teracting Fermi gases with different chemical potentials is
given. This yields the final answer with an explicit expres-
sion for the current as a function of time. Approximations
enter during the diagonalization step of the Hamiltonian,
which limits our calculation to weak and intermediate inter-
action U. However, the voltage bias can be large (beyond the
linear-response regime) and the real time evolution followed
into the asymptotic steady-state limit without any difficulties.

II. TRANSFORMATION OF THE HAMILTONIAN

We employ a symmetric/antisymmetric basis
=é(ckwt Ckro) and re-express the Hamiltonian as

Ci+o
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H= E e_k(cIT<+a'Ck+a"i- Clt—o'ck—o') + Gdz d(TTdO'
ko

[oa

+ 2 V(chyody+Hee) + Udld,d]d. (2)
ko

Notice that only the symmetric combination of lead opera-
tors couples to the impurity orbital, which plays an important
role in the solution later.

In order to work out the flow equation solution for the
current, it turns out to be convenient to use a finite system
with a discrete level spacing. The thermodynamic limit will
then be taken at the very end when the current is evaluated.
We take a constant level spacing A corresponding to a con-
stant and equal density of states p=1/A in both leads. The
symmetric noninteracting terms in the Hamiltonian can then
be diagonalized*

D €l oot 2 Ve ody+He) = 2 ech e (3)
ko ko so

by defining the prediagonalized basis

Vv
Cso= 2 Bsck+0' + Bst' (4)
k &~ €&
with the transformation coefficient BS:# and the line-
V€&

width I'=p7V?. The inverse transformation is d,=3B,c,,
and through this the interaction term can also be expressed in
the prediagonalized basis,

Unin| = > UB&{BSlBsngzcsﬁclfﬁCsélc-le' (5)

’ '
SlS1S252

In the sequel we will work with normal-ordered expressions.
In this model we define normal ordering with respect to the
noninteracting ground state in equilibrium, which is also the
initial state at time r=0. The chemical potentials of the left
and right leads are u; and up, respectively, and V=g
—pr denotes the voltage bias. Strictly speaking, the Fermi
function in the prediagonalized basis has no sharp edge even
at zero temperature due to hybridization. But this effect van-
ishes in the thermodynamic limit and we can use

_ (T
ng= <Cs0'C50' 0

=S Uie) + (&) (6)

with the usual Fermi function

1
fol&) =T 5 (7)

In this paper we will generally work at zero temperature
(B=), the generalization to nonzero temperature is straight-
forward.

The starting point of our analysis is the following Hamil-
tonian:
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FIG. 1. Schematic representation of the parameters in the Ander-
son impurity model.
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- t t
H= E Eka_o.Ck_o.+ 2 €CsoCs0r
k so

+ UBXIBSIBSEBXZ:C;{TcslTc;élcw:, (8)

! ’
3131325‘2

which corresponds to Eq. (1) with a single-particle energy
edz—%Est[fL(es) +fx(€,)]. Notice that the energy of the im-
purity level is then related to the lead chemical potentials,
i.e., at zero temperature by

__ U v Vi Vaa
ed—,u,——z—zﬂ_ arctan| u — ) + arctan| u + )

)

i . .
where u= L2 *. The natural parameters in an experiment are

€;— 1, Vi, and U (see Fig. 1). For convenience the calcula-
tions in this paper will be expressed through the parameters
Mrs g, and U (or w, V4 and U). However, one can easily
solve Eq. (9) to find the corresponding value of u for a given
€;—pm. Obviously u=0 (or pg=—u;=V,,/2) corresponds to
the particle-hole symmetric point €;,—u=-U/2 (see Fig. 1).

The flow equation approach employs suitable infinitesi-
mal unitary transformations in order to diagonalize a given
many-particle Hamiltonian. Thereby a one parameter family
H(B) of unitarily equivalent Hamiltonians is generated,
where H(B=0) is the initial Hamiltonian (8) and H(B=)
the final diagonal Hamiltonian. Such a unitary flow can be
generated as the solution of the following differential equa-
tion:

dH(B)

g~ LB).H(B)], (10)

where 7(B) is an anti-Hermitean operator. Wegner showed*?
that the so-called canonical choice 7(B)=[H(B),H;y,(B)],
where H;,(B) the interaction part of the Hamiltonian, leads
to the required renormalization grouplike diagonalization
scheme. Our key approximation will be the restriction to
second order in U. In this approximation the generator
7(B)=7"(B)+ ®(B) takes the following form (for more
details see Ref. 45):
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(1)(3) = 2 (Es{ + Esé — &

o
XISZSISZ

—Bles +es—€, —€ )2
GSZ)UBS'leBséBsze Sy TSy s s

XC‘!

T
sT JlTC

s'l 3Ql ’
2 52 »2
B,B,B,B} B,
1 2
=t X
s is,xiszxérr 5! S
2 2
XQ, szs,e—B(eSr +ey, €& - eszr) -B(e, + €, = &)~ & r)

+
X (e + §Y+26S2—26AY{ —26s£):c3,gcm:, (11)

where

def
Qsis25£=nsinsé _ns;ns2+ns2(1 _nsé)' (12)
The flow of the single-particle energies plays no role in the
thermodynamic limit if one is interested in impurity correla-
tion functions or the current. Therefore the final diagonal
Hamiltonian takes the following simple form:

H(B = OO) = 2 €kC}:_0_Ck_". + 2 evcjg—cs(r' (13)
ko so
Here one should notice that energy-diagonal terms like
5Er+€r€+6 UB'BB/B STfl
51 1
H(B= 00) but have been neglected in Eq. (13). This is permit-

ted since these terms are thermodynamically irrelevant, that
is, they vanish in the thermodynamic limit.

TCT/ Cy, |- still remain in

III. FLOW OF THE CURRENT OPERATOR

Clearly, the time evolution generated by Eq. (13) in the
diagonal basis is trivial. However, the price we have to pay is
to express the observable we are interested in this diagonal
basis.* Specifically, we look at the current operator /=I;
+1;, where

IO'= (aI‘NL(T_

lV
2k

&[NR(T)/Z

(d'ci_y—H.c.)

\%
=23 B(ch e, - Hel). (14)
2 s,k

Due to spin symmetry we only need to calculate the spin-up
current I, since I,(¢)=1(t).

The Hamiltonian has been diagonalized by the unitary
transformation U(B) corresponding to the generator 7(B)
given above. We perform the same unitary transformation on
the current operator

dl, (B)

g = L7B).I(B)] (15)

with the initial condition that 7;(B=0) is given by Eq. (14).
In the current operator the antisymmetric combinations c;_;
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stay invariant under the unitary transformation, while the
commutator of cZT and 7 generates higher order terms like
c‘, cI, 1 Cs) |- The commutator between this term and 7 feeds
back 1nt0 the coefficient of cYT For the lowest order correc-
tion with interaction (second order in U), the ansatz of the
flowing current operator looks like

ot
I,(B) = E%(B)chk > MT‘fsz(B)ICS;TCSQLCSZ&C/(—T

slszszk
+H.c. (16)

Here we neglect the six-fermion operators which are in order
of U?. Because they are in normal ordering and will not
contribute to the expectation value. At the same time the
feedback of them to 1, is at least in order of U°. Substituting
this ansatz into Eq. (15) one finds the following flow of
parameters:

IpYs= U E MT]lslzszQsiszsé(es + 652 -
513252

2
XB,B, B, BBl &, &~ &)
A Sl 52 52

65; - Esé)

2
+U E ’Ys’Qs;szsé
s’ #s,s{szsé
2 52 p2
€+e BB} B.,B,B,
1 2
X 2 + es 63‘, - Eyr _—
2 1 2 €, — €1

2 2
Xe_B[(Es + Esz - Es]' - Esé) +(Es' + E,rz - Es]' - Exé) ]’

aBMmz—UE Vo (€0 + €7~ €, — €)

)
XBs{BﬂB‘véBs eBlei e —a —a ) . (17)

The higher order term in dgM}|'?" is neglected since we take
only terms up to second order in U into account.

Next we use the simple time evolution in the diagonal
basis

I,(B = ,1) = ¢ (B = ) 1) (18)
leading to
i(20,1) = y(0)e",
MTlllzéz(Oc f) M 1 252(00) it(€g 1+ € ) (19)

Next we undo the unitary transformation, that is we integrate
[Eq. (15)] from B=c with initial conditions [Eq. (19)] to B
=0,

1,(0,1) = Ek 'yS(O,t)cj,'Tck_T

+ E M lszxz(o t) Cr

slszyzk

T Yl Cy l:ck—T+H'C‘

(20)

Our target is actually y,(0,¢) in this expression as we will
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find in the next chapter that only v,(0,7) contributes to the
expectation value of the current.

The solution of Eq. (17) to the second order in U can be
written as (see Appendix A)

iVB, iVB,U?
%,(0.1) ===’ + 2 T(D)B;
31
€iD _ e‘ 2 eiext_ eiéflt
(¢, - D)(e, D) (e - €,)(€, - D)
(1)
where
2.2
T(D) = E Qsis£(€5;+éxé_D)B~Y;Bsé >< Bz(f_y; + esé _D)
s1s)

(22)

and D is over the energies in prediagonalized basis.

IV. CALCULATION OF THE CURRENT

At time t=0 the coupling between the leads and the im-
purity is switched on. The initial state is the noninteracting
ground state, so the expectation value of the current operator
can be obtained easily: The quartic term in Eq. (16) is normal
ordered and does therefore not contribute to the expectation
value. The time-dependent current is expressed as

1,(2) ={1,(0,1))o

(0, t)e it VB,

=Re E 2 [fule) - faled].  (23)

With Eq. (21) this gives an explicit expression for the current
(see Appendix B). The summation over s; and s can be cal-
culated analytically. However, one has to be careful since
there are poles in the function and the summation cannot be
simply transformed into a principal value integration. We
employ the following trick to circumvent this problem. For

2
x P’D'—e'e 1

example, when calculating ZXE e <+ We introduce a sec-
ond time ¢’ and write the expression as

Bl 1-éler

fnt) = > ——e ) (24)

s € €& es_D

Obviously f(z,7) is the original function that we are inter-
ested in and f(z,0)=0. Now the pole at €,=D can be elimi-
nated by partial differentiation with respect to t’,

E - th( l)ei(es_D)t,. (25)
s k

The poles at €,=¢€;, can be eliminated likewise (see details in

xskr _ efrz’

Ref. 46) and the result is ES < eisst’ T Therefore
9 ' et(ek—D)t _e—(iD+F)t'
lj =—ie'”" - (26)
at € — il

and the original function follows by integration, f(z,1)
=f (t)dt’gtﬁ,. The key idea of our method is to introduce the

PHYSICAL REVIEW B 82, 125124 (2010)

additional time parameter ¢’ and to get rid of the poles by
performing derivatives with respect to ¢'. Afterward one can
convert the sum into an integral. Finally one performs the
integration with respect to ¢ and gets the original function.

We divide the current into the zeroth-order term and in-
teraction corrections (see Appendix B),

1(1) = I'90) + 1), (27)
where
1(0)
Lo~ [ adsa e
y ( 2I' s _r,€sin e =1 cos et) (28)
242t E+T7
and
1 207 -
0 [ ada e’ [ anfio)
‘R |: PRI toierTt
| D=eD+il2 " (exiT)(D+il)

( iet-T't _

1)(iD+ie— 2F)] (29)

(e+iD)2(D +iT)?

The dimensionless function 7 is defined as

T"(D) = f dEX]/dESé
r Qv (5 r+E r—D)v
7T3(F2+6 )(F2+e )[F2+(er+er—D)2]
(30)

If one uses the hybridization I" as the unit of energy and 1/T°
as the unit of time, one can write F—fh as a function of three
dimensionless quantities: V,,=V,,/’, U=U/T, and 7=It
with

1
o = 1EV D). G

Two limiting cases deserve special attention. First, it is
straightforward to verify that the current is actually zero at
t=0 as required. The calculation of the steady-state current
when t— o0 is also not difficult. The terms proportional to

¢ 1" vanish in this limit and we find after a short calculation,

1)

lim—

2r
t_mr'/h:de[fR(E) fi(e)] X |:€2 2

4U% f T(D) 2707 ~ 8—F2]
e T ot T "9y
(32)
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V. RELATION BETWEEN THE CURRENT AND THE
IMPURITY SPECTRAL DENSITY
Using Green’s-function methods, the current can be ex-
pressed by the lesser Green’s function as

1) = \%E R[GL() - Got)].  (33)
2k

where G,fa(t,t)=i<d4{(t)ckaT(t)>0. According to Meir and
Wingreen,*’ the lesser Green’s function is related to the re-
tarded impurity Green’s function,

ee] V
G (tt) = J dt'|:g2a(t,t')—rG<(t’,t)
0 V2

\%
+ g,fa(t,t’)?G“(t’,t)} , (34)
V2
where
g 01') = —ib(t—1")e' D), (35)
gt =ie (36)
are the conduction band Green’s functions and
G=(t,t") =i(d(t")d; (1)), (37)
Gt,t') =i0(t" = ){d;(),d (")} (38)

are the impurity Green’s functions. Equation (33) can there-
fore be rewritten

©

1 . ,
L(1) = 2_f de(fi = frr) X ImJ dt' ' G (1,1),
T

0
(39)

where we have used the relation G%(¢,t')=G"(¢',1).

The retarded Green’s function G'(¢,¢’) defined above de-
pends not only on the time difference r—t'. We therefore
define a time-dependent impurity spectral density

-1
p(t,e) = —Im G'(t,¢€), (40)
T
where G'(t, €) is defined via

G'(1,€) = J dt' e ="Gr(t,1). (41)
0

Now the time-dependent Meir-Wingreen formula relates the
time-dependent current with the time-dependent impurity
spectral density,

1) = f de[fr(€) - fr(€)]p(t.€). (42)

The flow equation result for the Heisenberg time evolution of
dL(t) has already been given in Sec. I'V. Therefore the calcu-
lation of the time-dependent impurity spectral density is
straightforward, details can be found in Appendix C. Explicit
comparison of Egs. (28) and (29) from the direct solution of
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FIG. 2. The current correction I(”)(t) due to interaction at
particle-hole symmetry, €,=—U/2, for zero temperature. The inter-
action strength is U=I". Results for voltage bias V;=I" and V,
=2I" are depicted. The main features of I(")(t) are a vanishing de-
rivative at r=0, followed by a sharp decrease and finally a smooth
crossover toward its steady value. One also notices the onset of
oscillations at large voltage bias V,,=2I".

the Heisenberg equations of motion for the current operator
with Eq. (C6) shows that our previous results in Sec. IV are
consistent with the time-dependent Meir-Wingreen formula
as should be expected. In the steady-state limit t— > we find
the familiar equilibrium impurity spectral density

lim p(t.e) I 20%l J
B = +
S PO i) T @+ )

7(D)
e-D

UT(e) (€ -T2)
(€+T2)?

This equation reproduces the result in Ref. 16.

(43)

VI. TIME-DEPENDENT CURRENT AT PARTICLE-HOLE
SYMMETRY

The above formulas for time-dependent current and spec-
tral density hold for arbitrary left and right lead chemical
potentials. In the sequel we will present some explicit results
for the time-dependent current at the particle-hole symmetric
point, €;—(u;+ug)/2==U/2.

We perform numerical integration to get the time-
dependent current curves. A direct estimation of Eq. (29) is
difficult because there is a pole in the integrand. Alterna-
tively, we calculate the time derivative of the current, i.e.,

d {1@(;)

V.
407 sin—44
dt F/h}

2 -
= f dDT(D)

< r e—iDt _ e—l"t Fte‘F’
(&) +
(D+i1)?  D*+T1?

} L (44

We then perform numerical integration of the right side in
Eq. (44) and employ a fourth-order Runge-Kutta method to
solve [Eq. (44)] and get the current. The symmetry of T
function, i.e., T(-D)=T(D), is used to simplify the calcula-
tion.

Figure 2 shows the interaction correction to the current at
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FIG. 3. The current without interaction and for interaction
strength U=1.5I" at voltage bias V;=I". The interaction suppresses
the current. The inset shows the suppressed oscillation of the
current.

different voltage bias. Its time derivative at =0 vanishes.
This is contrary to the free current, which has a sharp in-
crease at 1=0 (see Figs. 3 and 4), which indicates the initial
condition n,=0. However, this initial charging process is in-
dependent of U due to the lack of electrons in the impurity,
which explains %I@(t:O):O.

For t>1/I" the current correction approaches its steady
value. Larger voltage bias leads to a stronger suppression of
the current due to the U>-dependent correction term. This can
be understood to arise from shot-noise decoherence effects,
which suppress the quasiparticle resonance, similar to the
well-established effect of current-induced decoherence in the
nonequilibrium Kondo model.*

The suppressed ringing oscillation in both current correc-
tion and total current can be seen at large voltage bias V,
=2I" (see Figs. 3 and 4). From Egs. (28) and (44) one can
easily deduce the ringing oscillation period 47/ V,,, consis-
tent with Ref. 48.

One should notice our calculation is perturbative and only
valid in small U regime. When U is as large as 6", the
results include negative spectral density and are unphysical
(see Ref. 45 for details).

VII. CONCLUSIONS

We have demonstrated how the flow equation method
(method of infinitesimal unitary transformations) can be used
to calculate transient and steady-state currents in and beyond
the linear-response regime through interacting quantum im-
purities. Our approach is perturbative in nature, therefore we
are restricted to weak to intermediate values of the interac-
tion in our analysis of the Anderson impurity model in this
paper. One key feature of our approach is that there are no
secular terms in the long time limit, that is, the steady state is
reached uniformly in the expansion in the interaction. We
reproduce previous results for the steady-state currents'® and
obtain analytical results for the transient current behavior
leading to the steady state. Our approach is more convenient
compared to Keldysh techniques since the time-dependent
Dyson equation is difficult to solve in a self-consistent way.
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APPENDIX A: SOLUTION FOR y,(0,1)

The differential equation [Eq. (17)] is solved order by
order in U. According to the definition of the current opera-
tor, we have the initial condition )/S(O,O)z%/B‘Y and M(0,0)
=0. The zeroth-order solution can be written as M(B,t)=0
and v,(B ,t):%/Bse’“S according to Eq. (19). Substituting
v,(B,1) into Eq. (17) and integrating with respect to B at f
=0, we get

sisész — , 2 ,
M;'2(B,0) = iVU #Z B,B; B,B,,
Exl E.v;"'?vé_exz
1—eBlegtey -6 )’

(A1)

2(651 + Esé - esl - GSZ) .

Integrating with respect to B for a given time ¢ one finds the
first-order solution of M,

olllesteg =€)

S{sész _ B2 R,
M22(B.1) = zVU?, B,/B; BB, X TP —
1 1 2 1 2

. 2
ite, —B(e;’ + € — €, — €
51 (-‘1 S Sz)

: (A2)
2(631' + Esé - esl - 632)
Taking the limit B— % we find
B,/B> B,/B, ¢"si+esmes)
rt S s S S
M) =iVUE — — = (A3)

s 2(Es{ + Esé - Es] - Esz)
Substituting the above expression and the zeroth-order solu-
tion of vy, into Eq. (17), we find the solution of vy, to second

order in U,

675'0) = Ys‘(oo’t) - YS(O’I)
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zVBU L
Ty 2T, l(eS—D)(esl—D)

eiteé.l (A4)
+——— |,
€ — esl)(esl - D)

where D=¢1+€;,—¢€; and T(D) is defined in Eq. (22). Then
we have

¥,(0,1) = €' ,(0,0) + 8y,(0)] - Sy,(t)

VB ) B U iDl_ iESt
VB ey S 1B X | —————
2 2 s,D (es_D)(Esl_D)
eiest_ eiexlt
+ ) |. AS
(ES_ESI)(EX] _D):| ( )

APPENDIX B: THE CALCULATION OF THE
CURRENT

We divide the expression of the current into the zeroth-
order term and the interaction correction, I;(f)= I(0 (1)
+I(‘ (1), where

1) =Re>, ——

sk 2(6 - ) S Nf () - fr(e)] (B1)

and

inBZ UZe—iEkt
](C) )=Re P S
! ( ) 2 2(6s - Ek)

T(D)B;
s,k,s1,D !

|: et — oles 'S’ — ' ]

X +

(es_D)(esl_D) (ex_esl)(esl_D)

X [frle) — frlen)]. (B2)

The sum over s and s; is calculated analytically by the
method introduced in Sec. IV. The sum over s in the zeroth-
order term is straightforward. Next we need to calculate

A= L

361 S

eP! - ei€ 'S —e
| (e, D)(e D) (e evp(evl D)
(B3)
We first calculate the sum over s and get
2 . : . ~
Ao 1 E B'YID [ elad — oiDt . P It .

g—il'y € - D - ¢, D-il’ € ~ &

i€ t it
et — etk

-I't i€t
e —e
. B4

esl—irl B4)

When calculating the sum over s;, we have to get rid of the
poles at € ,=D. We rearrange the terms so that &,—D in the
denomlnator and e'%'—¢”" in the numerator appear simulta-
neously, i.e.,

PHYSICAL REVIEW B 82, 125124 (2010)

Ao 1 . (eth_ e'—I‘z) .\ 2 Bz el — oDt
g—il'| 2I'(D —il) o 1(L=Sl - D)(.ss1 - €)
oDl _ ity
+ 2B — . (BS)
s ‘I(Esl_D)(Esl_lF)‘|

Employing the method from Sec. IV again we find

A 1 1 (eiekt_ oDt e—l"t_ eiDt) e—l"z_ oDt
= + +
ir

€ —il €—-D D-il (D-il)?
. It
ite
. B6
+D—iF] (B6)

Substituting the expression for A into [Eq. (B2)] we obtain
an expression for /). The pole at €,=D is a removable sin-
gularity so that we can change the sum over k£ and D into a
Cauchy principal value integral. This transformation makes it
easy to estimate the long time limit and to compare our result
with that in Ref. 16. The interaction correction for the current
is then given by

(t) J dDd

[fR(E) fi(e)]

<R { ie’(f‘ "mi (1D +ie=2)
l D-om+i’ " (ex)XD+i)
[eist—t
e+ D+ i)} (B7)

APPENDIX C: THE CALCULATION OF THE
SPECTRAL DENSITY

The evolution of the d. operator is similar to the current
operator and can be expressed as

di() =2 7,0.0)c; + X W22(0.0):c),

515252

o
16551 S50

(C1)

where  %,(0,0)=77,(0,1) and M;IffSZ(o,z):—M;lffsz(o,t).
The anticommutator is

({d(0).d"(1)}) = 2 %,0,0%,(0,1")

+ Mﬂf2 0,0)M

Y1S2Y2

111262(0’ t/) X Qsiszsé .
(C2)

By using the summation method from the calculation of the
current, we find
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, 2U(¢ = 1)el ')
7:(0,0%,(0,') =" "+ UT(D) X | ————
2 ,0.0%(0.1)=e O) X | = i)

e—iDt+iDt’ _ eF(r’—t)
(D +il)?

. ’ N
—iDt-T't" _ elDt —lDl+e

D*>+T?

+

. li ’
e iDt'-T't _ e—F(l+t )

+

(C3)

Setting B=0 and performing the summation over s; in Eq.
(A2), we get

-I't it(e;+e,—€,
a— e ( Sl .Y2 Yz)

~ 1 e
M:12°2(0,1) = UBy/B,/B . C4
e e — ey -+l ©4)

Using the definition D= €+ €€, We obtain

PHYSICAL REVIEW B 82, 125124 (2010)

2T (1 = 1) ')

’ _ -
{d(0.d" (")} = e +U2T(D)Xl 2i0(D +iT)

e—iDt+iDz’ _ eI‘(z’—z)
— (C5)

(D +il)?

] ~ The impurity orbital spectral density is therefore given by

1 e (€ sin et — cos )
(€ +1) " m(€+1)
UZT(D) [ jele D) _ teieTt
(D-(D+2 " (D+i)(e+i)
(T 1)(iD + ie— 2)}
(D +i)*(e+1i)?

plt,e) =

+Re

w

(Co)
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